
There’s Always a Bigger Fish: A Clarifying Analysis of a
Machine-Learning-Assisted Side-Channel Attack

Jack Cook
MIT CSAIL

Cambridge, MA, USA
cookj@mit.edu

Jules Drean
MIT CSAIL

Cambridge, MA, USA
drean@mit.edu

Jonathan Behrens
MIT CSAIL

Cambridge, MA, USA
behrensj@mit.edu

Mengjia Yan
MIT CSAIL

Cambridge, MA, USA
mengjiay@mit.edu

ABSTRACT
Machine learning has made it possible to mount powerful attacks
through side channels that have traditionally been seen as challeng-
ing to exploit. However, due to the black-box nature of machine
learning models, these attacks are often difficult to interpret cor-
rectly. Models that detect correlations cannot be used to prove
causality or understand an attack’s various sources of information
leakage.

In this paper, we show that a state-of-the-art website-fingerprint-
ing attack powered by machine learning was only partially analyzed.
In this attack, an attacker collects cache-sweeping traces, which
measure the frequency at which the entire last-level cache can be
accessed over time, while a victim loads a website. A neural network
is then trained on these traces to predict websites accessed by the
victim. The attack’s usage of the cache led to a consensus that the
attack exploited a cache-based side channel. However, we provide
additional analysis contradicting this assumption and clarifying the
mechanisms behind this powerful attack.

We first replicate the website-fingerprinting attack without mak-
ing any cache accesses, demonstrating that memory accesses are
not crucial to the attack’s success and may even inhibit its per-
formance. We then search for the primary source of information
leakage in our new attack by analyzing the effects of various iso-
lation mechanisms and by instrumenting the Linux kernel. We
ultimately find that this attack’s success can be attributed primarily
to system interrupts. Finally, we use this analysis to craft highly
practical and effective defense mechanisms against our attack.

CCS CONCEPTS
• Security and privacy → Side-channel analysis and counter-
measures; • Computing methodologies→ Supervised learning
by classification.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ISCA ’22, June 18–22, 2022, New York, NY, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8610-4/22/06.
https://doi.org/10.1145/3470496.3527416

KEYWORDS
side channels, website fingerprinting, microarchitecture, deep learn-
ing, security

ACM Reference Format:
Jack Cook, Jules Drean, Jonathan Behrens, and Mengjia Yan. 2022. There’s
Always a Bigger Fish: A Clarifying Analysis of a Machine-Learning-Assisted
Side-Channel Attack. In The 49th Annual International Symposium on Com-
puter Architecture (ISCA ’22), June 18–22, 2022, New York, NY, USA. ACM,
New York, NY, USA, 14 pages. https://doi.org/10.1145/3470496.3527416

1 INTRODUCTION
Application-level security in modern systems relies heavily on un-
derlying system software to enforce isolation between different
security domains. However, achieving this isolation is challeng-
ing due to the existence of covert channels and side channels. In a
covert- or side-channel attack, a transmitter program leaks informa-
tion about a secret to a receiver program by leveraging contention
over a shared resource. In this paper, we focus on studying side
channels where the transmitter program is the victim and the re-
ceiver program is the adversary. Most side channels exploit system-
level resource contention such as memory allocation [31] and file
system utilization [67], or hardware resource contention such as
caches [22, 46, 79, 80], branch predictors [16, 17], DRAM [58, 78],
and pipeline ports [3]. Side channels are widely effective and can be
used to leak cryptographic keys [55, 61, 69], website content [6, 64],
and user activity [43, 54].

Problems With Machine-Learning-Assisted Side-Channel Attacks.
Recently published side-channel attacks have made extensive use
of machine learning techniques, which simplify the development of
these attacks and improve their robustness [4, 7, 12, 29, 35, 40, 42, 50,
59, 62]. When exploiting a side channel, an attacker needs to extract
a secret from the observation of side effects generated by a victim’s
execution patterns. For relatively complicated applications such
as website fingerprinting [64, 73], document fingerprinting [49],
and acoustic side channels [2, 18], the relationship between these
observations and the secret can be difficult to identify. However,
machine learning models make it possible to solve this problem
with relatively high accuracy. This has led to major improvements
for many side-channel attacks [4, 7, 12, 29, 30, 35, 40, 42, 50, 52, 59,
62, 64, 65].

https://doi.org/10.1145/3470496.3527416
https://doi.org/10.1145/3470496.3527416

ISCA ’22, June 18–22, 2022, New York, NY, USA Cook et al.

Unfortunately, the usage of machine learning in these settings
has incited a worrying trend. Machine learning models are very
good at finding correlations, which enables them to be used re-
gardless of one’s understanding of the side channel being attacked.
This leads to the development of powerful attacks that are poorly
understood. Without proper analyses, the community is left unable
to develop effective countermeasures or strategies to close the side
channels entirely.

This Paper. In this paper, we provide such an analysis for an
attack that had not been entirely understood until now. Specifi-
cally, we show that the website-fingerprinting attack proposed by
Shusterman et al. [64], also known as a sweep-counting attack, does
not primarily leverage signals generated by cache contention. In
fact, we show that system interrupts are the primary source of
information leakage in this attack.

In a sweep-counting attack, the attacker begins by allocating
a buffer with the same size as the last-level cache (LLC). Then,
over a series of short time intervals, the attacker repeatedly records
cache-sweep counts by accessing the entire buffer multiple times and
storing, into a trace, the number of times it was able to do so. When
the attacker process is running in parallel with the processes ren-
dering a victim’s tab, the generated trace is characteristic of activity
performed by the website loaded by the victim and can be used as
that website’s “fingerprint.” The attack is implemented in JavaScript,
allowing it to be embedded in any website. It also achieves relatively
high accuracy on most web browsers and operating systems.

However, we find that in this sweep-counting attack, attributing
the attack’s success to the cache doesn’t tell the full story. Our
analysis challenges the previous assumption and shows that this
attack primarily exploits interrupt-based side channels. We present
two supporting arguments.

First, we demonstrate that the attack works well even after all
memory accesses are removed. In our new attack, which we call a
loop-counting attack, the attacker repeatedly increments a counter
in a loop and periodically saves it to a trace. We then evaluate
our loop-counting attack using website fingerprinting as an estab-
lished benchmark and compare our results with the state-of-the-art
cache-based attack introduced in [65]. We test multiple combina-
tions of operating systems (Linux, Windows, and macOS) and web
browsers (Chrome, Firefox, Safari, and Tor Browser). Our attack
can distinguish between 100 websites with accuracy as high as
96.6% in Chrome and Safari, and as high as 95.3% in Firefox. In all
but one experimental configuration, our attacker outperforms the
state-of-the-art [65]. These observations show that other side chan-
nels likely play an important role in the sweep-counting attack’s
success.

Second, in a more controlled experiment, we directly compare
the accuracy of the sweep-counting attack to our loop-counting
attack and show that the extensive memory accesses made by the
sweep-counting attack actually inhibit its performance. We also
observe that its accuracy is much more affected by noise introduced
by generating interrupts randomly than by repeatedly sweeping the
last-level cache. From these observations, we hypothesize that the
primary source of information leakage in both the sweep-counting
attack and our loop-counting attack comes from interrupt-based
side channels.

Intuitively, in both of these attacks, instruction throughput
should decrease as the attacker’s CPU core spends more time han-
dling system interrupts triggered by the victim. We verify our
hypothesis about a potential interrupt-based side channel with
additional analysis.

First, we investigate how our loop-counting attack performs
under different isolation mechanisms. Our findings make it possi-
ble to rule out various hypotheses regarding the attack’s primary
source of information leakage, such as frequency scaling and CPU
resource contention, both of which are also able to affect instruction
throughput. Our analysis shows that existing isolation mechanisms,
including virtual machine isolation, do not defend well against our
attack.

Second, we develop a tool that uses eBPF to instrument the Linux
kernel, which helps us prove that the primary source of leakage in
the loop-counting attack comes from system interrupts. We find
that over 99% of our attacker’s execution gaps lasting longer than
100 nanoseconds are caused by interrupts. We additionally leverage
our eBPF tool to study the timing characteristics of different types
of interrupts.

In our analysis, for the first time in the literature, we find that
non-movable interrupts, such as softirqs and rescheduling interrupts,
play an important role in leaking application information. This
finding is important as nearly all prior work studying interrupt-
based side channels [43, 68] focuses on movable interrupts such
as graphics and network interrupts. Linux provides convenient
interfaces to block information leakage due to movable interrupts
by isolating them from potential attackers. However, preventing
leakage due to non-movable interrupts may require major system
redesigns.

Finally, we use the insights from our analysis to propose and
evaluate two immediate countermeasures against our attack. One
of these adds randomness to the attacker’s timer, and a second
introduces noise by generating interrupts at random. These coun-
termeasures reduce our attack’s accuracy in Chrome on Linux from
96.6% to 5.2% and 70.7% respectively.

Contributions. The main contributions of this paper can be sum-
marized as follows:

• We demonstrate that in the sweep-counting attack presented
in [64], cache-based side channels are not the primary source
of information leakage. Instead, we provide analysis show-
ing that the attack’s primary source of leakage comes from
system interrupts.

• We show that interrupt-based side channels can be used to
mount a powerful website-fingerprinting attack that outper-
forms the state-of-the-art [65].

• We highlight the security implications of non-movable in-
terrupts, which have not been studied in detail.

• We open-source our trace collection, model training, and
eBPF toolset at https://github.com/jackcook/bigger-fish.

Our work highlights the importance of thoroughly analyzing
side-channel attacks, especially those assisted by machine-learning
techniques. We hope this work raises awareness about the limita-
tions of machine learning as a tool and motivates the community
to develop better methodologies for analyzing side channels.

https://github.com/jackcook/bigger-fish

There’s Always a Bigger Fish: A Clarifying Analysis of a Machine-Learning-Assisted Side-Channel A�ack ISCA ’22, June 18–22, 2022, New York, NY, USA

2 BACKGROUND
2.1 Cache-Based Side Channels
Cache-based side channels [37, 46, 64, 80] have been extensively
studied in the literature to leak various types of sensitive infor-
mation, including cryptographic keys [46, 55, 80, 81], user activ-
ity [43, 44, 54], and website content [64, 65]. Many cache attacks,
such as Prime+Probe [46, 55], work by creating contention on
attacker-chosen cache sets between the attacker and victim and
using high-resolution timers to monitor the cache.

Shusterman et al. [64, 65] proposed a cache-occupancy attack
that requires no detailed knowledge of the cache’s organization,
such as knowledge of cache associativity and address mapping
functions, and can work with low-resolution timers, notably includ-
ing the timers provided by a web browser. Their attack works by
measuring the average memory activity of a victim. Specifically,
the attacker repeatedly measures the time it takes to access a last-
level-cache-sized buffer. When the victim performs some memory
accesses, it loads the corresponding data in the cache, evicting cache
lines that have been previously loaded by the attacker. When the
attacker executes again, it should take a longer time for the attacker
to access lines that are no longer present in the cache. This timing
information has been believed to be enough to infer the number of
cache lines that have been evicted, which is the “cache occupancy”
status of the victim. This attack is not fine-grained enough to re-
cover cryptographic keys, but is powerful enough to predict classes
of activity performed by the victim, such as web browsing activity.
In this paper, we show that contrary to popular belief, this attack
relies more on interrupt-based side channels than cache-based ones.

2.2 Interrupts
The attacks introduced in this paper primarily exploit interrupt-
based side channels. Thus, we give a brief introduction to interrupt
mechanisms and different interrupt types.

System interrupts are events triggered by hardware devices or
software that require immediate responses. It is a hardware mech-
anism used to deliver information from the outside world or to
otherwise signal an event that requires software attention. When
an interrupt is raised, it is routed to one of the CPU cores where it
triggers a special piece of code to save the current context and start
executing in kernel mode. The operating system then determines
the cause of the interrupt and triggers the appropriate interrupt
handler. During this process, the task that was previously running
on the core remains paused. Once the interrupt handler has com-
pleted, the scheduler either resumes the previous task where it left
off, or context switches to another process. User code is normally
oblivious to interrupts that happen while it is running, though a
particularly attentive process might notice a small jump in the wall
clock time.

Interrupts are notably one of the main asynchronous mecha-
nisms that stall a program’s execution. We describe several types
of interrupts that are relevant to our attacks, classifying them by
how they are triggered below.

Device Interrupts (IRQs). Device interrupts are triggered by hard-
ware devices, such as USB and PCI devices, to signal external events,
like the arrival of a network packet, or the completion of queued

work, such as writing a disk block. Each device interrupt is associ-
ated with a device source.

Operating systems have various policies for how they balance
device interrupts between different cores, but often interrupts are
either routed to one specific core based on the interrupt source
or distributed among all cores equally. In either case, the process
running on a core when an interrupt arrives may not belong to
the same process as the work that triggered the interrupt. Linux
provides a command line tool, irqbalance, through which users
can specify the interrupt distribution policy to improve system
performance.

Local Interrupts. Local interrupts originate from within the CPU
itself. For instance, processors contain programmable timers that
raise timer interrupts after a specified amount of time has elapsed.
Timer interrupts are critical to the operation of schedulers in mod-
ern operating systems, because these schedulers rely on timer in-
terrupts to preempt a process when its time slice expires, instead
of counting on the process to yield voluntarily.

Inter-Processor Interrupts (IPIs). Interrupts can also be triggered
by operating system software running on remote cores. For in-
stance, when the operating system makes updates to page tables
that require invalidation of TLB entries stored on other cores of the
system, it uses an inter-processor interrupt to perform the required
TLB shootdown.

Softirqs and IRQ Work. Softirqs and IRQ Work interrupts are
Linux software constructs that are used to perform some of the
work associated with handling device interrupts. They allow for
tasks to be queued to run at a more convenient time, often when
the OS is already handling a timer interrupt. Unfortunately, Linux
does not provide any interface for users to configure when and
where they are processed.

2.3 Interrupt-Based Timing Side Channels
Interrupt-based timing side channels leak information based on
CPU time used for handling interrupts. These side channels involve
a victim and an attacker, where the victim can be a user-space
program or the operating system. The goal of the attacker is to
figure out whether and when the operating system receives and
processes interrupts. The attacker program executes on a CPU core
and repeatedly probes a clock to record the time.

Figure 1 shows an example of an interrupt-based timing side
channel attack. The attacker and victim processes are executing
on two different cores. When there is no activity on the machine,
the attacker can continuously execute on the CPU (e.g. before T1),
and the observed timer samples increment steadily. However, the
attacker’s observation of the timer will be different if the victim
issues a request to an external hardware device, such as sending a
network request to a NIC card. When the requested packet arrives
at the machine, the NIC card will generate a network interrupt,
which can be routed to the attacker’s core depending on the inter-
rupt distribution policy used by the operating system. When the
interrupt arrives at the attacker’s core at) 1, the CPU pauses the at-
tacker process and starts executing an interrupt handler. Only after
the interrupt handler is completed at) 2 can the operating system
resume the attacker process. In this case, the attacker will observe a

ISCA '22, June 18�22, 2022, New York, NY, USA Cook et al.

Figure 1: An example interrupt-based timing side channel.

�jump� in the observed timer samples. Based on the timer samples,
the attacker can �gure out when the interrupt was triggered and
measure the amount of time used by the interrupt handler, which
is) 2�) 1 in the above example.

Note that interrupt-based timing side channel attacks are di�er-
ent from attacks that directly read system �les to obtain interrupt
statistics. We provide a detailed discussion on these attacks in Sec-
tion 7.

2.4 Website-Fingerprinting Attacks and
Defenses

Throughout the paper, we use website �ngerprinting as an estab-
lished benchmark for evaluating and comparing the e�ectiveness
of side-channel attacks. Website �ngerprinting is a type of attack
where an attacker tries to distinguish which website is visited by
a victim. Knowing which website a user connects to is more than
su�cient to obtain detailed information about a victim, such as
religious beliefs, sexual orientation, and political views. There exist
many variants of website-�ngerprinting attacks, which we can clas-
sify into two categories based on the resources that can be accessed
by the attacker:on-path attacksandco-located attacks.

An on-path attacker executes on a di�erent machine from the
victim. The attacker observes all the network packets sent and
received by the victim's machine and infers the website based on
the timing and size of the observed network packets [10, 20, 25, 27,
28,32,33,41,47,56,57,60,75,76]. Such an attacker can only observe
the network-level activity of the victim, and thus can be mitigated
by obfuscating network tra�c patterns [8, 9, 11, 53, 74, 77].

A co-located attacker executes on the same machine as the victim
and shares multiple micro-architectural resources with the victim,
including caches, DRAM, and GPUs. In the case of a low-privileged
attacker, the co-location can be achieved by observing the victim ac-
cessing a malicious website running attacker-controlled JavaScript
code. Prior work has demonstrated the usage of micro-architectural
timing side channels to distinguish di�erent websites with high
accuracy [19, 23, 52, 54, 64, 65]. For example, Shusterman et al. [65]
proposed a website-�ngerprinting attack that can distinguish 100
websites with accuracy up to 92%. The attack works by collecting
traces re�ecting cache occupancy while the browser loads and ren-
ders websites, and then uses deep neural networks to classify the
traces correctly. We discuss other co-located website-�ngerprinting
attacks in Section 7.

int Trace[T*1000];
loop {

counter = 0;
t_begin = time () ;

do {
/ / count iterations
counter++;
/ / memory accesses
for (i =0; i<size ; i++) {

tmp = bu�er [i * 64]
}

} while(time ()=t_begin < P) ;

Trace[t_begin] = counter ;
}

(a) Sweep-counting attack

int Trace[T*1000];
loop {

counter = 0;
t_begin = time () ;

do {
/ / count iterations
counter++;

No memory accesses

} while(time ()=t_begin < P) ;

Trace[t_begin] = counter ;
}

(b) Loop-counting attack

Figure 2: Pseudo-code of the sweep-counting attack (a) and
our loop-counting attack (b).

Threat Model.In this paper, we use interrupt-based timing side
channels to perform website-�ngerprinting attacks as a recurring
example for our analysis. In this context, we follow the co-located
attack model. Unless explicitly stated otherwise, our attack's code
is implemented in JavaScript and is restricted to the low-resolution
timer provided by the web browser being used.

3 THE LOOP-COUNTING ATTACK
In this section, we build an attacker program that is almost iden-
tical to the sweep-counting attack [64], but does not perform any
memory accesses. We call our new attack aloop-counting attack.
We show that the pro�les of the traces collected by the two attack-
ers are highly correlated, suggesting that only a small amount of
information is lost when foregoing cache accesses.

3.1 Attack Description
We show pseudo-code for a sweep-counting attacker in Figure 2a
and our loop-counting attacker in Figure 2b. In both algorithms,
the attacker takes a parameter of period length%as input. It then
constructs a trace, where each element in the trace measures how
many iterations of the inner-most loop were executed every%
milliseconds. In the sweep-counting attack's code, the loop body
contains an increment operation, memory accesses to a large bu�er,
and a call to thetime() function. Note that the bu�er's size matches
the size of the last-level cache so that one completion of the inner
loop sweeps the entire last-level cache. The counter value can thus
be used to infer how many of the accessed cache lines reside in the
cache. Conversely, in the loop-counting attack's code, we make no
memory accesses inside the inner-most loop, but instead only have
an increment instruction and a call to thetime() function.

Since the sweep-counting attack's code (in Figure 2a) measures
the throughput of memory accesses, it was previously believed
that the resulting trace was a good proxy for memory throughput
and cache occupancy over time. However, in addition to cache
hits and misses, the throughput of memory instructions can be

	Abstract
	1 Introduction
	2 Background
	2.1 Cache-Based Side Channels
	2.2 Interrupts
	2.3 Interrupt-Based Timing Side Channels
	2.4 Website-Fingerprinting Attacks and Defenses

	3 The Loop-Counting Attack
	3.1 Attack Description
	3.2 Trace Examples
	3.3 Comparing Attacker Traces

	4 Evaluation
	4.1 Evaluation Setup
	4.2 Evaluation Results
	4.3 Comparison to the Sweep-Counting Attack

	5 The Primary Source of Leakage
	5.1 Effects of Isolation Mechanisms
	5.2 Identifying the Underlying Side Channel
	5.3 Interrupt Characteristics

	6 Countermeasures
	6.1 Randomized Timer
	6.2 Adding Noise with Spurious Interrupts

	7 Related Work
	7.1 Interrupt-Related Attacks
	7.2 Co-located Website-Fingerprinting Attacks

	8 Conclusion
	Acknowledgments
	References
	A Closed-World Websites Dataset

